ELLAGIC ACID

The true anticarcinogenic phytonutrient
I. **Introduction**

Ellagic acid is a polyphenol, found in certain fruits and nuts including grapes, strawberries, raspberries, pomegranate, Morinda citrifolia, Terminalia chebula and walnut1, 2. This phenol is one of the most promising chemopreventive agents3.

Medical findings in Europe show that Ellagic acid may reduce the incidence of birth defects4, promote wound healing5, reduce and reverse chemically induced liver fibrosis6 and may help in the fight against heart disease. It also has antibacterial and antiviral properties7.

Ellagic acid acts as scavenger to “bind” with cancer causing chemicals, making them inactive8. It is non-toxic lung tumorigenesis chemopreventive agent9. Its higher dose significantly inhibits lung tumorigenesis9.

Research in US indicates that in the laboratory Ellagic acid slows the growth of abnormal colon cells in humans10. It promotes apoptotic growth (natural death) of cancer cells11.

Ellagic acid inhibits chemically induced cancer in the lung, liver, skin and esophagus of rodents and TPA-produced tumor promotion in mouse skin12.

II. **Chemistry:**

Gallotannins and ellagitannins are polyesters of glucose which on hydrolysis release the sugar and either gallic acid, Hexahydroxydiphenic acid (HHDP) or both. This HHDP rapidly lactonizes to Ellagic acid. The structures of some of these compounds are shown in Figure 1.
III. Pharmacological actions:

Ellagic acid has substantial potential for decreasing the risk of tumorigenicity13,14. It is an antioxidant as effective as or better than α-Tocopherol or tertiary butylhydroxyanisole (TBA) and it shows inhibitory activity against lipid peroxidation13. It is a chemo-preventive agent. Ellagic acid has potential to inhibit the carcinogenic effects of at least three classes of chemical carcinogens viz. The Poly Aromatic Hydrocarbon (PAH), N-nitroso compounds and fungal toxins15. The ability to bind to DNA and scavenge the ultimate forms of the carcinogens to play a role in the mechanism by which it inhibits mutagenesis and carcinogenesis16, 17.
It is a potent inhibitor of catalytic activities of two human DNA topoisomerase I & II. Hydroxyl group and the lactone groups are the most essential elements for topoisomerase inhibitory action18.

Ellagic acid controls hemorrhage in animals and humans19, presumably by activating Hageman factor \textit{in vitro and in vivo} and thereby causing a state of hyper coagulability19, 20

It is also effective for the treatment of ulcer and gastrointestinal disorder such as constipation, heartburn, non-ulcer dyspepsia, and esophagitis21.

\textbf{IV. Preclinical studies}

\textit{a. Inhibition of Skin cancer / cutaneous cancer:}

Topical application of Ellagic acid had exerted strong protective effects against 3 - methycholanthrene induced skin carcinogenesis in BALB/C mice22. It protected NMRI Swiss mice against 7, 12-dimethyl benzo -(a)-anthracene induced skin tumours23.

Studies22 indicate that Ellagic acid had a profound inhibitory effect on enzyme activity, intracellular and extracellular metabolism of Benzo (a) pyrene (BP) and water soluble conjugation as well as enzyme mediated binding of hydrocarbon to keratinocyte DNA in a dose dependant manner. Hence Ellagic acid is useful in modulating the risk of cutaneous cancer resulting from exposure to these environmental chemicals.

Ellagic acid had been shown to inhibit the tumorigenicity of BP P-7, 8-diol-9, 10-epoxide 2 in newborn mice and on mouse skin24.

\textit{b. Esophageal Cancer}

Ellagic acid had produced a 50% reduction in esophageal tumors induced by N-nitroso benzlmethylamine NBMA (carcinogen) \textit{in vivo}25. Barch & Fox26 showed that it inhibited the metabolism of NBMA and the
binding of NBMA metabolites of DNA in cultured rat esophagus. It was also showed that feeding with Ellagic supplemental diet for 3 weeks resulted in a significant protection against NBMA methylation of O⁶ – guanine in rat esophageal DNA²⁷. Ellagic acid exhibited inhibitory effects toward preneoplastic lesions as well as neoplastic lesions induced by N-nitroso benzylmethylamine.

Study²⁸ indicated that Ellagic acid had the potential to act as naturally occurring inhibitor of Aflatoxin B₁ related respiratory damage.

c. **Lung Tumorigenesis**

Laesca²³ showed that Ellagic acid inhibited Benzo Pyrene – induced lung tumor formation in strain A/J mice. Studies²⁹ suggested that Ellagic acid inhibited Benzo (a) Pyrene induced mouse lung tumorigenesis by both the inhibition of Benzo (a) Pyrene–trans–7–8–diol metabolism and of the subsequent binding of benzo Pyrene metabolites to DNA. Large doses of Ellagic acid prevented lung tumorigenesis induced by tobacco carcinogen, 4(methyl – nitrosamino) – 1 – (3 – Pyridyl) – 1 butanone (NNK) in A/J mice³⁰.

d. **Apoptosis (natural death) of cancer cells:**

The effects of Ellagic acid on cell cycle events and apoptosis had been studied in cervical carcinoma (caski) cells. Ellagic acid at a concentration of 10⁻⁵ M induced G arrest within 48 hrs. and inhibited all over cell growth and induce apoptosis in Caski cells after 72 hrs of treatment. Activation of the Cdk inhibitory protein P21 by Ellagic acid suggested a role for Ellagic acid in cell cycle regulation of cancer cells¹¹.
e. **Increase in antioxidant enzyme activity:**

Ellagic acid enhanced anti-oxidant (glutathione peroxidase, quinone reductose\(^3^1\) and phase II glutathione transferase) enzyme activities\(^3^2\).

f. **Liver fibrosis**

Oral administration of Ellagic acid significantly reduced the elevated levels of enzymes, lipid peroxide and liver hydroxy proline in Carbon tetrachloride (hepatotoxic) treated animals and rectified liver pathology. Hence, Ellagic acid can act as protective agent against Carbon tetrachloride induced toxicity and subsequent inhibition of fibrosis\(^6\).

g. **Birth defects**

Ellagic acid modulates 2, 3, 7, 8–tetrachlorodibenzo–p–dioxin (TCDD) induced fetotoxicity and oxidative stress in embryonic and placental tissues of C\(_{57}\)BL/6J mice. (3–6 mg/kg per day). Ellagic acid, was administered to the pregnant mice on days 10, 11, 12 and 13 of gestation. It significantly decreased TCDD – induced malformations including cleft palate and hydronephrosis. Treatment resulted in decrease of 47 – 98%, 79 – 93% and 37 – 53% in the production of superoxide anion and lipid peroxidation in embryonic and placental tissues. Ellagic acid provides protection against TCDD – induced fetal growth retardation and increase in lipid peroxidation in embryonic and placental tissues\(^4\).

h. **Cardiac ATPase activity:**

It increases ATPase activity in Cardiac sarcoplasmic reticulum vesicles and help in cardiac contractile responses\(^7\).
V. Oral Dose

Ellagic acid appeared to be well tolerated by both experimental animals and humans. Rats fed with Ellagic acid (doses as high as 50 mg/kg per day up to 45 days) did not exhibit any signs of systemic toxicity\(^{33}\). Intravenously administered doses of 0.2 mg/kg Ellagic acid showed to be well tolerated by humans\(^{34}\).

Antioxidants, Curcumin (400µ moles), Ellagic acid (200µ moles) & bixin (200µ moles) per kg body weight provided protection against chromosome damage produced by radiation in mice\(^{35}\).

Castonguay et. al 1994, studied the inhibition of lung tumorigenesis at four dose levels of Ellagic acid. Mice fed with 4 g of Ellagic acid/kg diet reduced by 54% the lung tumor multiplicity\(^{9}\).

VI. Nutraceutical Applications

Ellagic acid is an anti-oxidant\(^{31, 32}\), hepatoprotectant\(^{6}\), anti-carcinogen\(^{3}\) and antimutagenic\(^{38}\). It is a naturally occurring inhibitor of carcinogenesis in foodstuffs\(^{2}\). Ellagic acid can be used to treat gastrointestinal disorders\(^{21}\).

VII. Topical Applications of Ellagic acid

1. Inhibitory effect of Ellagic acid on melanogenesis.

Ellagic acid, a naturally existing small molecular polyphenol, has high affinity for Cu at the active site of tyrosinase. It has inhibitory effect on melanogenesis under UV – induced skin pigmentation in both brownish guinea pig and human. The utility of Ellagic acid in a six week double – blind clinical trial was rated slightly useful or better in 86% of subjects. No adverse reaction was observed through the trial period. These results suggested that Ellagic acid is a useful agent for treating pigmentation such as spots and freckles produced by UV\(^{36}\).
Ellagic acid applied to the skin of guinea pig in vivo had a higher skin whitening effect than the pure Quercetin, Catechin and Kojic acid

2. Collagen Synthesis (wound healing)
Addition of 0.5 µg/ml Ellagic acid to the cultured Keratinocytes increased the collagen type VII synthesis by 64%. Its application reinforces the dermal epidermal junction or improving hair condition by increasing the proportion of collagen VII in the presence of Keratinocytes and or fibroblasts. Ellagic acid tones up the skin, reduces wrinkles and effects hair conditioning.

3. Ellagic acid is a potential chemopreventive agent against skin cancer.

VIII. Recommended level for topical application
For skin preparations, such as sunscreen, skin whitening, wound healing and anti-inflammatory creams 0.3 to 1% by weight can be used.

Ellagic acid alkali metal salts, sodium salt or magnesium salt can be used as UV absorbents. 0.2% of sodium ellagate and 0.5% of magnesium salt are the permissible limits.

References

37. Patents:
 i. JP 02, 273, 613, 90, 273, 613, 1990
 ii. DE 19, 730, 408, 1998;
 iii. JP 02, 237, 90 b (90, 237, 906) 1990
 iv. JP 02, 231, 408 (90, 231, 408) 1990
 v. JP 02, 258, 707 (90, 259, 707) 1990
 vi. JP 02, 231, 407 (90, 231, 407) 1990
 vii. JP 02, 269, 176 (90, 269, 176) 1990
viii. Eur Pat. 294, 808 (C1 A61 K7/48) 1988
